Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons

نویسندگان

  • Jingcheng Li
  • Nestor Merino-Díez
  • Eduard Carbonell-Sanromà
  • Manuel Vilas-Varela
  • Dimas G de Oteyza
  • Diego Peña
  • Martina Corso
  • Jose Ignacio Pascual
چکیده

We report on the construction and magnetic characterization of a fully functional hybrid molecular system composed of a single magnetic porphyrin molecule bonded to graphene nanoribbons with atomically precise contacts. We use on-surface synthesis to direct the hybrid creation by combining two molecular precursors on a gold surface. High-resolution imaging with a scanning tunneling microscope finds that the porphyrin core fuses into the graphene nanoribbons through the formation of new carbon rings at chemically predefined positions. These ensure the stability of the hybrid and the extension of the conjugated character of the ribbon into the molecule. By means of inelastic tunneling spectroscopy, we prove the survival of the magnetic functionality of the contacted porphyrin. The molecular spin appears unaffected by the graphenoid electrodes, and we simply observe that the magnetic anisotropy appears modified depending on the precise structure of the contacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Spin-dependent transport through interacting graphene armchair nanoribbons

We investigate spin effects in transport across fully interacting, finite size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short ranged Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low energy many-body states is ...

متن کامل

Semiconducting graphene nanoribbon retains band gap on amorphous or crystalline SiO2

Related Articles Excitation of discrete and continuous spectrum for a surface conductivity model of graphene J. Appl. Phys. 110, 114305 (2011) Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects Appl. Phys. Lett. 99, 192102 (2011) The effect of doping on the energetics and quantum conductance in graphene nanoribbons with a metallocene adsorbat...

متن کامل

Electric field effects in zigzag edged graphene nanoribbons

We investigate the magnetic ordering in zigzag edged graphene nanoribbons under cross-ribbon electric fields by using the Hubbard model within the unrestricted Hatree-Fock approximation. In the absence of applied electric field, the ground state is an “edge-magnetized state” with magnetic moments mainly localized on the edges, where the moments on the two edges are mutually antiparallel. Under ...

متن کامل

Tuning Charge and Spin Excitations in Zigzag Edge Nanographene Ribbons

Graphene and its quasi-one-dimensional counterpart, graphene nanoribbons, present an ideal platform for tweaking their unique electronic, magnetic and mechanical properties by various means for potential next-generation device applications. However, such tweaking requires knowledge of the electron-electron interactions that play a crucial role in these confined geometries. Here, we have investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018